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SUMMARY

A theoretical inquiry is made into the nature of the laminar

boundary layer on an airfoil immersed in a hypersonic stream under the

assumptions that: (a) there is no heat transfer to the wall and the

Prandtl number is unity and (b) there is a zero gradient of pressure

normal to the direction of development of the layer along the wall.

The object of the first of these restrictions is to make it possible

to take a mathematically more simple approach to the problem than would

otherwise be possible if the complete general case were essayed, and

yet the degree of approximation will be maintained on a par with that

which is inherent in the statement of the basic differential equations

themselves, which are governing the flow. That the second hypothesis

is Justifiable will be demonstrated in the course of working out the

present analysis.

In the derivations given here, the treatment will be strictly

applicable only at a sufficient distance downstream from the leading

edge. To be more precise, the distance downstream at which the analysis

begins to be valid must be great enough so that _/R_ x _ i, where M_

is the free-stream Mach number and Re x denotes the local Reynolds

number (which is based on the distance measured from the leading edge,

and reaching downstream to the x-position in question at which the local

Reynolds number is to be evaluated). It is further agreed that the

present note is to confine attention solely to those cases in which the

angular deviations in the flow are small. This is to say, it is assumed

in this study that M_G _ i everywhere, where _ is the local angular

deviation of the velocity vector from the direction of the free-stream

flow. The perturbation angle is the sum of both the deflection due to

the shape of the solid profile over which the flow is coursing and the

angular deflection brought about by the flow disturbances produced

within the boundary layer.

*"Sullo Strato Limite Laminare in Corrente Ipersonica."

L'Aerotecnica, vol. XXXVI, no. 2, April 1956, PP. 68-94.

**Professor of Applied Mechanics at the Polytechnic Institute of
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The hypothesis is also madethat no mix:_.ngoccurs between the
external isentropic flow and the internal vi_cous flow, so that for
all intents and purposes the angle of inclination (measuredwith respect
to the free-stream direction) of each streamline at the outer edge of
the boundary layer does not differ from the angle generated there by
the action of the viscous flow lying adjacent to the demarcation line
between these two regions. Justification wiT.l be presented for use of
this particularly simplifying assumption during the course of arriving
at the salient propositions derived subseque1_tlyin the text. Under
this hypothesis, then, the pressure distribu-;ion existing along the
surface of the airfoil maybe obtained when the shape of this contour
is specified, or, better yet, whensomegoverning parameters which char-
acterize the contour shape are given. On th_ other hand, the shape of
the profile maybe determined whenthe pressure distribution that must
exist along it is specified.

Oncethe pressures have been determined then the skin friction
is calculable. Numerical applications of t_ analytic methods adduced
are madeto illustrate the use of the theory in two different situations:
(a) for flow along a flat plate and (b) for _'low along a curved wall,
the shape of which is specified by meansof _:ertain governing profile
parameters.

On the basis of the results deduced fr_l such an analysis, it
becomesclear that the influence of the pressure gradient, created by
the presence of the thick boundary layer, is appreciable even whenthe
hypersonic similarity parameter Me is as low as O.12. These severe
alterations in the pressure perturbations influence in turn the char-
acter of the boundary layer to such a degree that the skin friction
coefficient Cf can exhibit an increment of such great magnitude that

a reversal in the trend of the curve of skin friction plotted against

M_ can occur, as compared with what is usua[.ly found to occur if one

neglects the effect of viscosity in distorti, Lg the pressure distributions.

INTROI_JCTION

At hypersonic speeds the region of flow influenced by the pressure

field created by a given obstacle in the str_am is of the same order of

magnitude as the region in which the viscous effects are important, so

that, as a matter of fact, the entire pertu_,ed area surrounding the

obstacle should be treated as though it were a boundary layer. Under

such conditions it is not permissible to con_inue to assume that the

pressures found at the outer edge of the bo_idary layer will be the

same as those existing along the surface of the obstacle, as is ordi-

narily done under the assumption of zero vis(:osity for most of the flow

field, except for the thin layer close to th_ wall. On the contrary,



under hypersonic conditions, when the subsonic and supersonic ranges
of speed have been exceeded, it is necessary to account for the fact
that the viscosity of the fluid permeates the flow and influences the
pressure perturbations everywhere in the disturbed field. Thus the
pressure distribution at the outer confines of the boundary layer must
be derived in the course of the analysis. In order to carry out the
determination of such a pressure distribution it is most convenient to
tackle separately the two contrasting situations wherein: (a) M_ < i,
where _ is the local angular deflection of the velocity vector with
respect to the free-stream flow, taking into account both the deflection
due to the shape of the solid profile as well as the angular deviation
produced by the flow within the boundary layer, and where M_ is the
free-streamMach number, or (b) M_ _ I.

The first case represents the situation where the influence of the
boundary layer on the pressure distribution in the external stream is
going to be very weak, and it is only this type of flow which is to be
examined in the present analysis. The other basic hypotheses to be
premised here are that (i) the boundary layer is laminar, (2) there is
no heat transfer to the constraining wall, and (3) the Prandtl number
of the fluid is unity.

The case for which the deviations in the flow vector are allowed
to be such that M_ _ i will be treated in a subsequent report. This
situation maybe characterized, in fact, as the one for which the influ-
ence of the boundary layer on the pressure distribution in the external
stream is highly pronounced, or, in fact, it maybe called the "strong
interference" type of flow. In the proposed sequel report to this one,
the effect of heat transfer will also be examined in somedetail.

In regard to previous work in this field, one can Cite the work of
Lester Lees and Ronald F. Probstein (ref. 1), concerning the laminar
boundary layer in hypersonic flow for the case of weak interference.
Their analysis is somewhatprefactory because it is confined solely to
examination of the flow over a flat plate, and they use a method of
successive approximations, which presents obstacles to rapid calcula-
tion, especially if the desired degree of accuracy is narrowed to
desirably strict limits. Likewise, precursive considerations of an
approximate nature have also been madeby others in an attempt to under-
stand what takes place when there is a strong interaction produced in
the external flow. Introductory remarks on this score, but confined
solely to flow over a flat plate, have been madeby Lester Lees (ref. 2),
Shan-Fu Shen (ref. 3), and Ting-Yi Li and H. T. Nagamatsu(ref. 4).

In this present study the objectives are kept quite broad by
allowing the contour of the constraining wall to have any shape whatso-
ever, so long as the restriction as to M_8 being everywhere less than
unity is not transgressed. With this understanding the intent here is
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to determine the pressure distribution along the wall when its shape is

specified or when the geometric characteristi=s are designated by means

of certain governing parameters; or on the otuer hand, by means of the

method to be expounded here, one may also determine the shape of the

wall when the pressure distribution is prescribed. Finally, it will be

demonstrated how one can proceed to calculate the skin friction drag.

Numerical applications are given to illustrate the theoretical methods

expounded for two specific cases; the first for a wall-shape having

specified parameters prescribing its geometry, while the second example

pertains to a simple flat plate, used for com}arative purposes.

i. LIST OF PRINCIPAL SYMBOI_

X

Y

L

U,V

Ue

U_

coordinate axis taken in the direction of and having the sense

of the undisturbed free-stream velocity, and so positioned

that the origin is made to coinci, le with the leading edge
of the airfoil

coordinate axis taken in the directz[on normal to the X-axis

(it is taken for granted that the Y-coordinates of the

constraining wall along which the boundary layer is coursing

will always be close to the X-axis)

reference length;
X y

x--z, and y

components of velocity taken in the direction of the X- and

Y-axes, respectively

velocity of the stream at the outer edge of the boundary

layer (where it is assumed that tile component of this veloc-

ity in the direction of the X-axi_ coincides, for all

practical purposes, with the magnitude of the velocity

itself existing at the confines of the boundary layer)

limiting velocity attained when the flow expands into a
vacuu/n

u u_ Ue

pressure

density

T absolute temperature



i enthalpy

coefficient of viscosity

kinematic viscosity

Note: Whenthe symbols listed above carry the subscript e they
refer to the values that these respective quantities take on at the
outer edge of the boundary layer; and likewise, the subscript w per-
tains to values existing at the surface of the constraining wall, while
the subscript _ denotes values pertaining to the free stream.

J.l.* =_

u = x

p_U_L 2

Re

stream function, defined by means of the differential relations

Reynolds number referred to the undisturbed stream,
U_L

Re =
v_

Re x local Reynolds number, Re x = Re.x

constant which appears in the relation giving the dependence

of the viscosity on temperature, when expressed affinely
T

as B = C P
_e Te

Cw constant appearing in the affine relation ___w= Cw Tw

C e
constant appearing as the proportionality factor in _e = Ce _e

adiabatic exponent

M_ free-stream Mach number



_e inclination of the streamlines at the outer edge of the

boundary layer, measured with r£spect to the X-axis

slope of the constraining wall, m_asured with respect to the

X-axis, taken at any arbitrary general point along its

length

_0 x
_. i Pe

=u-_ _%_

C
C* : m : Cw

Ce

2c*_
Xe =

!

Xe = N_op0

function of

f_
n

function of

(i - u2)
Z =

1

Z=z-1

Z0 = z0 - i

7 -I

@, as defined by equation (20)

e, as defined by equation (20')



A _
n

constants defined through the relation that

n

@

2. GOVERNING EQUATIONS

It is to be taken for granted that the gradient of pressures normal

to the direction of development of the boundary layer along the wall is

going to be zero in all cases now under consideration. Under this

restriction, it then follows that the scalar equations expressing the

momentum change and force balance are

-_u -_u
_v_-gx+PV _y +

"_P -o
-_y

[t]

while, likewise, the following expression for the energy integral also

holds.

1 U _ ---- io -C 1 Ii + -U -y u.-' = _- u, _.

From equation (2) it may be deduced that

T I -- u2 O,
To 1 -- u2, p

as is demonstrated in appendix A. Furthermore, if one assumes that the

viscosity is going to be affinely related to the temperature, according

to the relation

_C T

and if the nondimensional versions of the velocities and density, etc.,

as defined in the symbol list for u, u e, p*, etc., are inserted into

the first of the relations presented in equations (i), then one may

convert this momentum equation into the following form

[2]

[3]

[4]
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"_ u , du. 1 l u -_2 u
_.u _-=_.u, _x+C'p'_,'_,'T t¢_ u._ -_._-

by use of the Von Mises transformation (see p. 122 of ref. 5), where

represents the stream function, defined in the symbol list.

Now make the auxiliary transformations

_= _,_- -vr___. ' a_ ; _= __,40
; _.= V_ _.

so the equation (5) becomes converted to

1 1 "_z

C l--u.: "_
_ VT_--_ _z

provided it is understood that

[5]

[6]

[7]

[8]

Furthermore, let the additional transfommation be introduced that

_*= C.]': (1--u._)d_ -- C _*u_: ] o P'* _'" V/ 1 -- u. _dx

Z=z--l-- u. 2-u' u, '_
l--u. z ; Z° = z°--l- 1-- u. 2

from which it follows that equation (7) will now appear as

where the boundary conditions on the unknown function Z

circumstances are

Z = 0 for _* = _ ; Z = Z 0 for _* = 0

under these

[9]

[Jo]

Ill]

3. SOLUTION OF DIFFERENTIAL EQUATION _DVERNING THE FLOW

IN THE OUTER PART OF THE BOUNDARY LAYER

In the vicinity of the outer edge of th_ boundary layer the dif-

ferential equation governing the flow, equat:.on (lO), may be written in

the more tractable form of
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_Z 1 -_2Z

X/'_o -_ _* 4 _-_,'
[12]

where this reduction is seen to be legitimate in consequence of the

boundary condition, expressed as the first of equations (ii), which

must be applicable in the region under consideration.

Now furthermore, by making the definition that

_" = v_o d _, - 1 C" P" u, dx = C" _*
u® p®

[]3]

provided it is assumed that

U__= T® C
_,. -c._- ; c.=-_.

the governing differential equation becomes even more simplified, to

read now

Z 1 _2Z

[14]

[12']

and this expression is identical to the one which arises in the study

of the boundary layer in incompressible flow.

If the limiting value of Z for _* = 0 is put into the form of

u_ v--I Mt +A(¢') Ao+A(_') [15]+ A (_.) =
Zo = 1 -- uS 2

where the shorthand notation has been introduced that

Ao=_M _ [16]

then it follows that the indicated form for the solution to the governing

differential equation, equation (12'), is Just

f,.,,._,.+ jVJo A (,_')do' {17]

and this solution will satisfy the imposed boundary conditions stated

in equations (ii).

4. TRANSFORMATION OF THE INDICATED S0_JTION

Let the unspecified function A(_*) be written in the form of a

series development for which
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A (_') -- Z,_o A,. 9"_- = Z,_o A, 19") [18]

with the understanding that equation (18) is ralid solely for _* > _0

when n < 0, where _ is a suitable value o _ q0*, and on the other

hand,

An(p* ) = Constant = A_ for n < 0 when _* < D0

Now, by use of this development given in equation (18), the formal

solution presented as equation (17) becomes c)nverted to the form

" _o" ]

provided one abides by the glosses now agreed upon and provided it is

taken into account that a certain amount of approximation is introduced

through calculation of the various integrals, which are treated in more

detail in appendix B. The nonappearing terms which have been indicated

by the three dots in equation (19) do not hav_ to be specified for the

purposes of this study, as is pointed out in the course of the observa-

tions made in appendix B. The rest of the no nsnclature for the symbols

appearing in equation (19) is assigned accordLng to the following

algebraic statements:

- - J - ; :'o"

where

F" A'_ ,-{_ (i - :e ) A',.r"

• A

t

e = --

(, :- ,_:i L20]

[21]

and where the complement of the error function has been indicated by

erfc e, and where the repeated integration of this same function has

been indicated by in[erfc (e)l. It is considered to be sufficient for

purposes of the present analysis to ignore the expressions for F:

having terms in < for which n < -3.
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5. DEFLECTIONOFTEESTREAMLINESPRODUCEDBY ACTION

OFTHEBOUNDARY-LAYERFLOW

By reference to the equation of continuity, it may be observed
that the change in angle of inclination of the flow at the outer edge
of the boundary layer, whenmeasuredwith respect to the inclination
that the stream has at the constraining wall itself, is given by means
of the formula

where _5 and _5 denote, respectively, the values of _* and of 4"

which are obtained at the outer edge of the boundary layer. The upper

limit on the integral appearing on the right-hand side of this equation

is taken to be infinity, rather than the value of 0 corresponding

to _ = , because as 8 increases into this range of values the

integrand tends towards zero very rapidly.

6. C_TION OF THE INTEGRANDAPPEARING IN

THE ANGULAR-DEVIATION INTEGRAL

In order to carry out the determination of the angular deviation

_e it may be assumed that the expression for Z obtained as the external

solution in section 4 will be valid here. The Justification for this

assumption will be given in appendix C. For purposes of evaluation in

equation (22), it is thus possible to make the substitutions

pu Z ; u., = u---_" + Zo

where Z is given by equation (19) and Z0 is given by equation (18).

Furthermore, under the condition that M_8 < i, it is admissible

to assume that, at a sufficient distance downstream of the leading edge,

the changes in state which take place along those streamlines which

travel downstream to meet the outer edge of the boundary layer will take

place isentropically in going from the conditions (p_,p_), existing in



12

the undisturbed flow, to reach the conditions (Pe,Pe) at the outer
edge of the boundary layer, regardless of the fact that a shock wave
is traversed in the process. Taking into ac_:ount this simplifying
assumption, the density ratio is found from _;heexpression

I I

and inasmuch as

U_ -- u. 2 1 Z o A I1
u_ u2.. l+Zo Ao I+A,+A

it turns out that

[24]

[25]

1

,+, , A,p. y 1 Ao+2(y--l) * Ao _" + 2_'2--7Y+6 Aa-- = = -- 6 (y-- 1)3 Ao---i+ "'" [26]

provided it is assumed that A0 >> I. The convergence of this series

A
development is assured simply by stipulating that 7-- < 1 must hold.

_O

It is also true that

= = , _l

u V +
where again it is premised that A0 >> 1.

Thus,

_, u_ 1_F 1 A 2--y A s 2y'--7y+6 .4_
_.,t, y--1 Ao _- 2(Y--l) _" Ao--q'+ 6iy--1-) _ -Ao:' _-"" [27]

Now take Z in the form

where

Z --A 0F0+ Z"

Fo = eric (0) and Z'= Z._ oF." (0)_'_-
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and observe that then

Zo Ao 4- A

- (Zo Z Ao(l -Fo) 1+ Ao--AoFo

A

Now whenever ¢ is of the order of magnitude of _, it is pos-

A - Z*
sible to develop (i + ¢)-i in a power series, where ¢ =

Ao( - Fo)"
Making use of such a development, one may recast equation (28) as

[28]

Zo 1 I Z*-- A F. (A -- Z*)(A F.-- Z') (.4 -- Z') _ (Z'--.4 t"o) ]Zo--Z -- 1--Fo 1+ A0(I--Fo) + Ao2(I--Fo.) z + Ao:_ (l -- /"o) :l +... [28']

and consequently,

Zo-- ZI

+

1 I ! Z'--A /% (AF o--Z.)[4(A-Z.)-(AFO-Z.)](l_Fo)y, 1+ 2 Ao(l--Fo) + 8.402(1--Fo) '

(Z'--AFo) [(Z.--A F./+ 4 (A--Z.) (Z*--AFo)+ 8 (A--Z'/] t +.
16 .4o J (1 -- Fo) a

[29]

Combining these above-derived expressions, it results therefore that

.[--I+

) [ ')--Y A2 2y2--7y+6 A a ]p® u® ([ou.__ 1 = 1+ l A _- . + __
_,u, \ pu y--I A o ' 2('f--l)_Ao 2 6(y-- 1) _ Ao a +""

,+a.,.ll+ , ( , .,._At.(l--Fop/, (l --Fo)V, Z.+ _-z A,,(t--Fo) + -g-Z" _d(7----F?_ ,1

where for brevity's sake the term standing on the right-hand side of

equation (29) which is enclosed in the braces is indicated in equa-

tion (30) merely by use of the empty braces { }.

Now let the integrand of interest be represented by a sum of terms

of the form

,)7 - _ *oo

p,U, \ 9 U

[30']

wherein H 0 stands for a group of terms which are independent of A_,

H I represents a group of terms which contain _, H 2 represents a

group containing _2, H3 represents a group containing _3, and so

forth. Thus, the definitions of the quantities H i are the following:
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Ho=--l+
l+ AoFo .

( 1 -- Fo)YZ '

nl_

2 -(l--Fo)v_ Ao(l--Fo) + (1--Fo)!2 ÷ Ao y--1 (l--Fo) z_] ;

n 2 --

+

1 + AoF o (AFu--Z')[4(A--Z*)--(AFo--Z*)] 1 Z* Z.--A F o
(l--Fo)_'_ 8 Ao _(1-Fo) 2 + -2 (1--Fo)_Jl A.(1--Fo)

1 A [I+AoFo 1 Z'--AF o Z" j '.--¥ A_ [ I+AoF. Iy--I A o (l--Fo)',i 2 Ao(1--Fo) + (1--Fo)V, + 2(_---i)_Ao 2 --l+(l--Fo)!l] ;

I+A oFo (Z*--AFo)[(Z'--AFo) 2+4(A-Z')(Z*-At'O)+8(A-Z')2]
Hs -- (l --Fo)'i 16 AoS (1 -- No) a

1 1 Z* (A Fo-- Z*) [4 (A -- Z o)-(A Fo--Z*)]
+ (l--Fo)"i 8 .4o2(1--Fo)*

1 A I+@(A Fo-- Z*) [4 (A -- Z*) -- (A F o-Z*)]
+ y--I A o (l--Fo)_ 8Ao2(1--Fo) 2

2--¥ A 2 [l+AoFo 1 Z*--AFo Z* ]+ 2(_[)'A o' [(l--Fo)i_J - 2 Ao(1--Fo) + (l--Fo)!i

2,'--7"1"-1-6 Aa [ l+AoFo]+ 6(y__l) 2 _1o3 --l+ (l--Fo)½ "

1 Z" Z" -- A F o ]
+ (1--Fo)!i 2 Ao(l--Fo) ]

[3U

7. CAIL_LATION OF THE INTEGRAL JUPPEARING IN

THE STREAMLINE DEVIATISN FORMULA

Having obtained the sought series expres:;ion for the integrand

appearing in the integral giving the deviation of the streamlines, it

merely remains to perform the piecemeal integ:'ations, according to

the formula

. ?,u---_ _u --1 dO= (Ho+H,+H2+Ha+ ..)dO=Iu+11+12+Ia+...

Proceeding

whe re

with these evaluations, one f:.nds that

Io= f:HodO :f:[--l+ 1. + AoerIe,O)]40_AoKo. F_Ic (o)
[32]

Ko = f_ eric 0_--_dO.
[32']
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Likewise, then

fo 7,11 = _ido= % ¢_
n<_0
>

1 + A0 erie0 Fn(e) - _ eric e

/Wf e % _rf 0

fo Z n1 A_ eric 8 d = AO Kl,n ¢3

7 1 _3 _ n<_0
>

In the case where n / -2, one has that

Fn(e)
dO

j -K,,. = 1 .... 1 + A o eric O /_* (0) eric 0 d 0 +
o V_I o ,,rlo I/e_7-d

1 __[ ®er/cO ] A." _ ,+ y--_l Jo I/eT[-6d 0 = A_- K,..

[33-a]

whereas, when n = -2, then

A._, K"
1,-2 -_K,. -2 Ao f_( 1 1 + A,,erlcOA'-3 2 -2 Ao er/ 0

AI_2

a o

K" A'-3
1,-2 + _ K',,_,

[33-b]

where

K" 2 i f® 1 l+A,,erlcO ) Oe-O'"-_ r_ _o'_ ( erlO-- u 2Ao + 1 dO.

Continuing on, to evaluation of the next integral,

[33-c]

it is found that

f "+'l' f:
• [4 A'*-- F=° eric 0 • A. ° 1 "®A. Ao --F..]d0+ __/0 F..AoW_

1 f'A,'[l+AoerteOF.'--crlO.A,," F.," ]+ _ o _o 2Ao}qr/0 aoerIO + AoVeT_{O] dO

2--y A_ A.* [® er/cO d- I .+m+ 2(y--l) 2 Ao z Jo _ 0 =AoZ._o_,,,_o¢?'_K_ .....

1 + Ao eric 0 eric 0 AJ -- F."

Ao (er/ 0) z

F,,," -- eric 0 A."
dO

Ao er] O

[34]
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In the case where n / -2 and m / -2, o_le has that

K2t _ m -- 1 fl _ 1 +AoerJcO erJcO--/.* [4(i__i,o) - ericO__/,.)]dOVXo
Am* Am*

Ao' v/-_l 0 (er/Oy

Z f ® I." f.'--erlcO dO+ Z "®[ ]+A°er/c' I''-ertcOI" + /'" ]+ d 0
-T o VT_Io _r!o _.:-i.,o 2AoV e#_ _rI0 _/_

2 -- y f® er/c O A.* A,.* .

+ 2(T--])_ .Io v/e-r/0 -d° - Ao' K2 .....

In the case where n = -2, m / -2, on th(, other hand, one finds

that

[34-a]

.Kt. --2. ,,.= .4.'(.4"_ a 2 [ ! /_ l +AocrtcO Oe-O'A'_SAo "_A-" K:._2,,. -- Ao _ Ao fngo'½ )" _oo o _/-er] 0 (eri 0)_[4 (l--/.,')--(eric (_--/-')] dO

l j: O e-O' l.'--ertcO dO] = A'_. A." K , A'_ a A.," K' [34-b]2 x/e-r/0 er/0 Ao 2 2.-_., + Ao 2 _.-_.,

whereas, for n _ -2, m = -2, one sees that

A,* A*-t K_ A,* A*_,
Kt ,.-z -- _l¥i . ,. -t Ao Ao

21/_ V' er]OI'" Oe-O'ert0
___ dO-- .

T

2 [ 3 jf l+A,erlcO erlcO--t."v'_ 9: _. _ _/7 :/o (erl o)2

1 " ]+Joe#cO Oe-a' Oe-a' IdO------

+ "A"AA:-$ K't. ,.. -2.

0 e-O' d 0

A,* A *-2 •

Ao" K2. ., -t

[34-c]

Finally, therefore, the fourth term in th_ evaluation of the

expression for the streamline deviation is

I s = H3dO=AoY_o_.__o_,_o 9*_IT 6" Ao •

l + Ao erlc O F." -- erf O A." ( F.* er/c O -- er/c O
%/_r/O A. (erI O)a \ Ao A, I _ A, Ao ]

+4( A'*A. F.*Ao )( F,* __er]c A,'_ + 8(A." F.o_(A," __ F,._ldO-X_o- Ao / Ao Ao /_ Ao Ao /J

,.. p,oo+- AoX/_rlO _4_(erIO)' 4 Ao Ao I-- Ao Ao /J

---_o

+ 2 Aox,/er/O Aoer/O dO+ 2(y_I)------_--Ao_-. o 2Aox/er] 0 AoerIO

F,. _ 2Ts--7"(+6A"A_"A" f® erlcO dot "+-'-+PK--v.------ d _ •

+ AoV',-#OJ o+ o(T--]), ao, j._ _=_AoY.._:oZ.:-oZ,;o.9 , °.,_..,. [35]
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In the case where n _ -2, m _ -2, and p _ -2, one finds that

A.* A,,* A,* I 1 fi_ l + Aoer/eO f.*--er/eOKs ..... " = - A oa 16"Ao. X/er/0 (er/0) 3 • [(/.. -- er/e O) • (/," -- er/e O)

if: 1.. er/cO--,."+ 4 (1-- t=*) (f,* -- er/e O)+ s(t--t..) 0--/,*)]do+ _- -_/e_ let�O):

1 J:l l+Aoerye0 er/eO--f.* [4(1--]..)--(er/cO--,.*)][4(1--/,*)--(er/cO--/,*)]dO+ _T-U1 Ao%/e-_]O 8 (er/0) 2

1 /.* l,*--er/cO I 2--¥ [_[ l+Aoer/cO /p*_er/cO+--2"_-_/0 er/O d 0 + 2(_T_Jo _/ 2 Ao %/-_ 0 er/o

+2T_--7V+6f ® er/cO I A,*A..*A,* K: .... ,.

In the case where n = -2, m / -2, and p _ -2, it is found that

Ip*

+ -v',_]-o ] ao

[35-a]

Ka.-2 .... = A*-_A'*A'" K* A,.*A,* (A__.__f 2 )
- Ao _ 3, -_,.,p + Ao _ o X/_ 'po*y'

l ] j® I+Ao er/cO Oe-t_' rtt ,__erJeO)(/e*--erfeO)+4(l--/,,')(/,*--er/cO)

1 t"® Oe-e' erleO_/. ° [4(l_/.)_(er/cO__/.)]dO+ 8 O-- 1") (] + t")] d0 + -K. o V'e_/0 (err 0)_

(@ . A._, K,,._,,.., 1._ A.* A,* Ka.-i. -., +
Ao s

[35-b]

where

2 1 l l _ 1 + Aoer/eO Oe-O' . 4(l--/.*)(/,*--erfeO)K' n. - t.,., -- _/-_ _,_ T6_o. (er/0)_, (eft t))a [(/'*-- erie 0) (1,*-- eric O) +

1 f® 0 e-8" er_c 0 -- f.* [4 (1 _ f,*) -- (erye 0 -- ],*)J d O. [35-e]+8(l--/.*)(l_]t.*)]d0+_- o _" (er/O)2

In the ease where n _ -2, m = -2, and p _ -2, it is likewise

found that

A..*A*-t A,* * A.* A,* A%a 2
Ks ,. -t ,---- -- Act Ks_,-i.,+ Ao I Ao _*'/t

( 1 f_e l+Aoer/eO /.'--'er/eO• _ %/_r]O (ertO) _ [--30e-O' (],*--er/cO)--8Oe-O' (l--]p*)]dO

1 ® tl + Aoer] cO --0Se-0'
_ f- /: -oe-_" [4(]_t,.)_,,l,O_],.)]ao+__ f jo t_-o_ 8(,_1o).

+ s )o_/_-T_ (_,/o),

O e-e" f,*--erfe O | .1 A." A,* [ A*-" * A*_,

[4(l--/,*)--(erleO--/'°)]-+--2Ve_[O er/O { old = Ao" _ Ao K,,.,-.,,+ _AT K's,.,-s,.) [36]
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where

2 1 l 1 f_ l-FAoerlc0 I.'_erlol)K',. _ -,., - _/_- _, _ o _/_t o (_1 o),

1 fl° 12 _Oe-_'-- 8 oe e' (l -- I,')] d 0+ _ _/eTT_ (_! o)'

[-- 3 Oc e"(I,'-- eric O)

[4 (1 - t,') -- (eric 0 -- t,')] d 0

1 -- Ao erJc 0 -- 0 e-_' Oe-_' J,"-- erfc 01 d O.[36-a]
A= e_ S (e#O)' [4(1--I")--(er/_O--I") 21/_j-G e#O

Finally, in the case where n / -2, m _ -2, but p = -2, one has

that

#_#_L*_p . 4g A*3 2 1 I 1 _ 1 + A 0 erfc e f*_ - e:F_c O_.3f _

K3'n'm'-2 - 4 K3'n'm;-2 + W _- -_ 41/--_ " l _ _,0 _ (%7f

L_ m

where

;o1
- erfc e + 4)ee -e2 - 8(1 - fm*)ee-e de +_

+ _i /0 _ 1 %_--_+A0 erfc_ e erfC8(erfo° - )2m'(-}ee-e_) +

2(; - l) 2 2AO_ O erf O

- + 3,n,:,-

f_ erfc O - f*.

(erf e)2 m(-soe-O_)de

K' ,-- --

[57]

[37-a]

in which the empty braces denote the series o_ expressions standing

within the braces of equation (37).

The sought expression for the angular deviation integral is thus

obtainable from the following series:

%/_, p,,u® (poUo __1 dO=A ° _Ko+Z..o_.TK,,,,

R+.,+I N-+ ,.4p+1 ]+ Z,,_o _.,_o_*--_-- KL.,.+ Z._oZ-:o_,-_o_" _ IC_..... ,
[3_]
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8. CALCULATION OF THE STREAM FUNCTION AT THE

EDGE OF TEE BOUNDARY LAYER

In order to evaluate the stream function at the edge of the boundary

layer, it may be noted first of all that the velocity profile within the

boundary layer may be expressed, through means of equation (9), in the
following form:

Am*

--='---= A.. [39]
u.' Zo 1 + F_.._o _ _'÷

Now let it be assumed that the square of the velocity ratio /u2''_

will take on a constant value at the outer edge of the boundary layer,

and let this constant be denoted by CO, where CO will be close to

unity, Thus it may be seen that the value of the stream function at

the outer edge of the boundary layer has to obey the following relation,
obtained from equations (39) by setting ** = 08:

F..(e_)
X." e_'½) = eric (_) + Y,. Ao _'_(l--c0)(1+ Z. [S9']

where the quantity e 5 is related to the stream function at the outer

edge of the boundary layer _, through the formula

where obviously 8 8 has been used to indicate the value of 8 which,

for each _*, corresponds to WS"

Having obtained the solution for 85 by solving equation (39')

under variant parametric values for _*, it follows that the sought

result for the stream function, when evaluated at the outer edge of

the boundary layer, will be given by

¢_.= _ _ [_1

When one compares the result Just adduced, equation (39'), with the

expression written above in equation (38) for the first term in the
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angular deviation formula, as given in full in equation (22), it is
apparent that the second term on the right-hand side of this equa-
tion (22) is negligibly small with respect to the first one, whenthe
Machnumber is large, that is, when A0 >> 1. The neglect of the second
term with respect to the first is countenancedon the secure grounds
that, in fact, the ratio of the second term to the first is of the same

1
order of magnitude as --.

9. CALgWYI_TIONOFTHECOEFFICIENTSIN THESERIESDEVELOPMENTFOR

THECOMPLETEENERGYINTEGRAL,CHARACTERIZEDBY THEPARAMETER_*

On the basis of the notation and develo].ments written out explicitly
in the preceding sections, it maybe seen th_.t the derivative appearing
in the first term (the only one needing to b_ evaluated) of the angular
deviation now takes the form

),.) p.p.,.,. 1)do= A, K,.

l+,.m i+-_-+, ]I

.÷_-- 1

[ 2_V;- n4- 1 .--i l-_-n+m¢_._ .2 - K ....=Ao K° + Z,*:-o_ _'-_ K_.,,+ Z,,:oE,,,_. 2 "'

l ÷ n A- rn + p _ *'+_+r- _ K3 ...... ,

In conformity and analogy with the assm_tion as to the isentropic

nature of the processes taking place along the streamlines, as premised

previously in setting down equation (24), it is likewise permissible to

presume here, for purposes of obtaining a su:.table expression for the

pressure ratio entering equation (22), that ILow

P'_=[iA-AoU2®--u°_[ v-I =1-- Y A ¥(2y--1) A: y(672--7yA-2) A a
p® [ ]u2® "l'_'--_--1 Ao -4- 2 (T -- 1) _" "4o: 6 (y-- 1) '_ -4o '_ + ' " ' [41]

m e
and inasmuch as --_ l, it follows that the sought angular deflection

u_

values are expressible as
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2C*Ao [ T A y(2y--l) A z y(6¥2--7y+2) A 3_'--_'= %/_e-e 1--} -1 A_ + 2(Y -1)2 Ao2 6(y--1)a A°a
_+m- 1

[ K o l+n .--1 n+ m+ 1 _* 2-- K2 ....
' t 2_-a + Z-:-o _ +'-v K'," + Z'_o E"-_° - 2 -

+ Z-_-o Z,,_o Zp-_o n+m+ p+ 1 ,,+.,+p 1 ]- . . 2 ¢P* 2 Ka ..... p

_ 2AoC. I K o {l+n K y A." Ko )" '

[y(2y--! ! Ko A..A,,,. y l+m K,,.,, A,,"
+ ZI* 0 X.a_m_0 [ 2(y__1)2 2 Ao l y--I 2 Ao

m+m--I+ 2 . . . [ 6 (y-- l)a

+ y(2y--l) l+PKt, p A,,*A=* y
2 (y -- l )* 2 Ao _ y -- 1

Ko A,,* A=* A,,"

2 A oa

A,*
Ka .... p 9."+" <Pp+m+ l K2.p + . .2

1

2 '' A,, 2

Now let it be considered that the angular inclination for the

constraining wall will be developable in a series of the form

f

_ = t% + _l q_*_ + _= _* + ....... _o Y,_-o b, _*¥
(bo=l)

[42]

_- . . .

[43]

so that one may state, in consequence, that the angular inclination

obtained at the outer edge of the boundary layer will be given by the

expression

2AoC* il ' [44]

where the empty braces standing in the first term on the right-hand side

of this formula have been employed to denote the entire set of terms

contained within the braces appearing in equation (42).

Under the dictates of the premises so far made in this analysis,

it is true that the pressure ratio may be expressed as

2_

=(, +
P=

[45]

and, thence, by referring back to equation (41), it is seen that

1

1+ M= _,= 1 Aol = 2 Ao

3 A 2 5 A s

8 Ao z- 16 Ao a _""

from whence it follows that the angular inclination at the outer edge

of the boundary layer may be written specifically as
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, ,A(, 3A 0A ) , 1[ A. ;_" = y--I M® A-o + 4 A o 8 Ao z _-''" -- y--I M_ -- _°-_o

3 A.* A.* "+= 5 A,,*A.*A_* .'+'_+p[ 2AoC'ii _ *
.... -- -- __ li+_oZb,0*_- [46]+ _ _',,zo X,,,--o Ao Ao ¢?*-_- ---8- '_,,:'-o .Y-,,,,So X,"o Ao a - _P _ ] x/R," t"_

The solution for the coefficients in th_ series development for

the complete energy integral characterized b]r the parameter _* may

thus be effected by equating like terms in the power series develop-

ments for _* involved on the right- and left-hand sides of equation (46).

Upon carrying out this matching process it i;; found that the following

set of relationships result:

In the case of equating the coefficient:; of (q_.)-i/2, one obtains

1 ! [ A'-, 3 A,," A'-I-,, 5 A,,* A." A'-I--.-,, ]y-- 1 M. Ao + _-÷o Ao Ao 8 Z,,;o E,,,-2o Ao8 j

__ 2AoC* ____._ 1 y Ao*Ko [y(2y--1) Ko A.*A*_.
"V"_* ¢ + T Ks.o- + X." o " --y--1 Ao 2 - 2(y--l) _ 2 Ao 2

y 1--n K,_ A." l ] .. [ y(6y_--7y+2) Ko-- _-- 1 2 ' _ + T K.,,,,_,, + Z,,-_o ...-_.o -- 6 (y-- 1) a 2

A.'A.*A*-.-. y(2y--l) 1--n--m K1 --, A.*A.*
Ao* + -"2 (y-- 1) _ 2 " Ao 2

A." 1 ]Iy l--n Kt ...... A- _+-_-- Ks ...... -,,,y--I 2 ' • '
[47]

whereas, when the general terms in _.q_2/ are equated, one obtains the

set of expressions

1 1 [ A," 3 A.. A.._. 5 A_.A=.A., .... ]y--I M= --_ +7_'_0 Ao Ao 8 _,,-_o 2_-'--o Ao a

2AoC'f2+qKLI+'(2 y KoA.,+, + y__.o[Y(2y--l) K o A.. A.,+,_.
I

V/'-_e y--1 2 Ao - 2(y--Iy 2 Ao Ao

¥ 2+q--nK_ A,,* 2+q I y(6yz--7y+2) Koy--I 2 .t+p- -_o + 7 Kt'"1+'-" + Xl*_o _._o -- 6 (y--l) 3 2

A.*A.*A*,+. .... y(2y_l) 2+q--n--m A.* A.* y 2+q--n
Ao a +- 2 (y-- 1) z 2 • _£1, t+, .... Ao 2 T--1 2

• Kt...,t+, .... _ + _ K, ..... t+, .... + b, _o [48]

where bq = 0 for q < O.

It is apposite to introduce at this point the hypersonic similarity.

parameters

2M s. C*

z. = V'-fi_ ; z'.= M. _o [o]
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and thus the various unknown coefficients which are to be evaluated by

use of the equalities given in equations (47) and (48) may be expressed
I

in terms of power series developments in the parameters M e and Xe.

The working form for such solutions is given in the following array:

Ao

_A_*= Dt

A4*

Ao "= D 4

A*_ 1

Ao

Me_|

Ao

Me_ 3

Ao

A**

Ao

3 1

X,*--('(-- l)X'o + -_- (y-- 1)_-Z'o*-- _-- (¥-- l)az','_ +...

3 3 )3 ..X,z--(y--l)b_x',+--_(y--l)'b,x',2----_-(y -1 btx',3+.

3 2 3
Z, s-(T-1)b aZ'.+7(b, +2b,)('1"--1) _'x'. 2-_( b,2+ b,)(T--l) 3z'o 3+''"

-- D'-t X, + Da-x X,a +- ..

--=D-, X,2 +...

-- D_ 3 X.3 +...

-- -=D'3 X, +D'ax. _+...

[._o]

!

wherein the unwritten terms contain powers of Me and Me with exponent

larger than 3, while, in addition, when i is odd the terms bi are

taken to be zero. It may be noted that the coefficients D will turn
!

out to be functions of 7 and of Me, and the way these parameters may

be evaluated will now be demonstrated.

Let the auxiliary definitions be introduced that

3 I a ,
L;=--(¥--l)x.'+_-(y--l)tx.'t---_-(y--1) X, 3

3 3
L s =-- (y-- 1) b s X,' + -2- (Y-- l) t btx,'z--_ - (y-- ])z btx,a

3 ,t 3
Ls = -- (y -- l) b. z/ + -_-(btt+2b.)(y--1)tX, ---_ (bit+ b.)(y--l)nz. '3

[Sl]

and also let the symbols _i,h be

array, constituting equation (52):

specified according to the following



24

[52]

a_ A a4 z a_ t a_ I a_6 g_

0.67 y(2y--1)
(y -- 1)2

--5.945
y--l

4 5.86

0.67 y(2y--l)
(v-- 1)'

--9.785 Y
y--1

4 13.965

o.67 v(_ _-1)
(y-- 1)'_

--6.585 Y
y--1

4 5.295

0.67 y (2y--l)
(y -- 1)2

--10.165 y-Y 1

4 13.53

0.67 y(2y--1)
(v--l) 2

14.445 Y
y--1

0.67 y(2y--1)
(y -- 1)2

-- 8.875 _TL1

4 15.105

Ctl_

_sk

0.335Y(2Y -1)
(y-- Ip

+ 2.345 Y
y--I

4 2.93

0.67Y(2Y -1)
(v--l) 2

+ 4.24 Y
y--I

46.28

0.67 v(2v--))
(¥--1) 2

-- 13.8o v
y--1

+ 2O.25

0.67y(2Y -1)
(V -- 1) 2

4 5.655 ¥
y--I

4 0.83

P
i 0.67 y(2y--l)

(y--l) 2

-- 13,115 y__T

4 21.475

0.335Y(2Y -1)
(y- 1)_

--4.24 Y
y--1

4 4.87

0.67 Y(2Y-I)
(y -- 1)_

--7.44 Y
y--I

+ 10.71

Y

y--I

_Tk

Q{8_

-- 10.27 + 0.67
0.67 Y (2 y-- 1)

(7- 1)2

-- 2.075 _

-- 1.35

0.335Y (2 y -- 1)
(y- 1)2

+ 8.74

8.875--0.67
O.67Y(2Y -1)

('r -- 1)_

-- 11.22 Y
y--Y

+ 17.76

0.67 T(2T-- 1)
(v-- 1),

-- 11.68 Y
y--1

+ 17.90

0.335Y(2Y -1)
(v-- I)*

--5.925 Y
y--I

+8.3

0,67 y(2y--l)
(V-- 1)'

--8.605 _

+ 2.86
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Also let the simplification of notation be made that

3 185_ 3 ( _ ) 3 ( 5 5 L_) [53]A= 1--_- Lz+- L 2 ; _,= _- 1-- --L 1 ; _= _ ,L_-- 2-LILs--_- .

Consequently, the sequence of D-values will be determinable from

the relationships given in equation (54).

D'_ 1
(y--l)' 0.67+ L,2_,.,

2 A

0" I

atL2D,_, (Y -I)R

1 (y2 1)_--_ % (D' ,)*+ -- --(¢t8.,+ L,_t,,.,)D'_,

D_= A

D_

_.(L,D_z+D' ,D',)-- 1.58v L_(D'_.)'-- (721)2-- [L_D' , .... ÷ I)',(_, ,+L,% _}2

A

D' 3

(_ -- 1)*

2 (L_%"+L_L3%'z+Lz_s'*}

D_

:h L2D_+ 2- D"_+ ¢_ Du-- -- (L, 2 L._D'_LD',)

A

(y--l} _ D'3(a_., + a_.2) + L2D'_a_.3 + L3D'-,_,2. 4

2 ,5

Dq

1s

aa(LaD,+ D', D'_) + a_ Do -- 8 (L_ D'_ _ -+- 2 L_ L_ D , -+. 2 L_ I)'_, D' a+ 2 L 3 D'_, I)'O

(y--l): L_D' a%,_+ L_D',_.,

2 A

5 (',f -- 1) _
a,(D'_tD,)-- 8-- D "_ , --_-- (D-z_, .- LiD _,_._ ? D'*-_%._)

D_= A

a,(L_D__+ D',D__}+ -_- DoD'-,-- (D'__,D',--2L_I) ' ,D,)

D_ ' = --- A

/)'i

(_,-- !)* 2L, Doa,.,+D'_,D',:t,.,+LfD_,a,._

2 A

at(L_ (D*_, + Do D', + D, D" , 4- D_, D's) + a_ D_ s

A

15

_- [2 (L_ + Ls) D'_, D, + 2 L,(D', D__, + Do D'_,) + (D' ,)' D'_ + (D',) * D' ,]
m

A

__ (y--l) "_ _DI_.t 4- (LIDt-_ DoL,)%.,+ (D'0_a_.n+ D'__D'_a...,_ LaD ,_._

2 A

D'_ = _'' (Ls D°_ + D, D', + D, D'__ + D o D'_) + a, D'_s
A

15 L,(D,D'_,+DoD'_÷ D ,I)'_)+L_(DoD' _-]-D',D_,)+I)' ,D',D's-}-L,L_D_s

_ (y--.1)_ D,_,:,+ {L±D, + L_Do) as.,-_-D',D'_cts _÷ 2L, D,a,.,

2 A

[5_]
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lO. DEPENDENCE OF THE GEOMETRIC CONTOUR OF THE AIRFOIL ON THE PRESSURE

DISTRIBUTION MAINTAINED ALONG THE EDGE OF T_{E BOUNDARY LAYER

It is seen that equations (50) give a relationship between the

coefficients An--_* (which control what the pressures are at the edge of
A0

the boundary layer) and the parameters b (_'hich determine the shape

of the airfoil constituting the constraining wall). Thus, if the coef-

ficients An* are known, because it is takel for granted that these

values were fixed beforehand, then it result_ that the coordinates of

the surface constituting the constraining wail will be produced by the

analysis, inasmuch as one has, for known A__ coefficients, that
A0

Oxo= l+Z._,po' _o"

[55]

Conversely, if the values of the coefficients _-- and thus the

nature of the pressure distribution are zonsidered to be given as

a function of the parameter _*, then by means of equations (50), one

will be able to determine the corresponding values of the contour

generators b i where one t_es into account the determination of b i

for values of i < 0 i.e., for _* > _0 , waile the values corresponding

to _ < _0 are represented by _w = Const_t. In this latter circum-
stance, therefore, equations (55) constitute ?arametric relationships

for the description of the constraining solid wall corresponding to a

given pressure distribution along the edge of the boundary layer, as

described by the set of values , _* •

As an intermediate form of proceeding, lying between the two

opposite versions mentioned above, one could consider the values of

the coefficients -- to be specified for n __ 0 and the values of
AO
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b i = 0 for i < 0. Under this arrangement, then, the relationships

spelled out in equations (50) provide the means of obtaining the values

An*
of _--- for n < 0 together with the values of bi for i > O, and

once these quantities have been elicited, then one may proceed to use

equations (55) to determine the shape of the constraining wall.

ii. LIMITS OF APPLICABILITY OF THE EXPOUNDED METHOD

The values of _* for which the method expounded in the preceding

sections is valid are those for which the following inequality holds

A A,," _°_- _J7 < 1
A-_ =_,,'__o Ao "

¢po'_"

and from this condition one may establish, as the lower limit on _*

for which the method is legitimate, the following criterion:

* = lim i

_min n___ _\An+l /

for n < 0 and for h < i

and likewise one may set as the upper limit on _*, for which applica-

tion of the method is Justified, the following criterion:

* = lim (An.ll2

_max n_ + _\ A_ /

k for n > 0 and for h < i

In both cases one must specify that the sum of the series, which

are assuredly going to converge if the stated conditions are obeyed,

must be less than unity.

12. DRAG LAW

Once the pressure distribution along the boundary layer has been

determined, it then becomes possible to calculate the velocity varia-

tions taking place in close proximity to the wall, and with this knowl-

edge at hand, it is then easy to determine the drag. The way these

steps may be carried out is as follows:



28

First let equation (i0) be recast into the form

7+" 4 zo _ +"

and note that in this expression

[I0']

- _ :" --7

Now, in order to obtain a description of Z which will be more

precise for that region of the boundary layer which is close to the

wall than would be obtained by using the solution for the outer region,

it may be assumed that in this close-to-the-wall region the velocity-

ratio term standing on the right-hand side of equation (i0') may be

replaced by a relation of the form

where --*_8has a value corresponding to the eraluation of 88

from equation (39'), where the definition of 9--_ in terms of

Just --*_ = o b.

obtained

eb is

In this new relationship for the velocit/ profile near the wall,

the constant _ has to be selected in such a way that a reasonably

satisfactory approximation will be obtained fc)r the actual well-

substantiated law of variation of u__ as a flmction of _*. Upon
m e

examination of profiles put into the form of plots of ; as

obtained by using data for which ue varies with the x-locatlon by

obeying an exponential law (such as treated by Falkner and Skan in their

work on the effect of pressure gradients on bc.undary-la_er character-
istics) having the form u_ = K xm, it is found that _ should take

the value i. 3. With this selection for _P_ it is readily verified that

equation (56) gives a good approximation for the way _ varies,
Ue

regardless of whether the flow is experiencing an acceleration or

whether it is going up-hill against an adverse gradient. Thus it may

be assumed for present purposes that
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- ff- k [o '3
V zo V _" "

Now make the transformation of coordinates defined by

' d v. [07]
= _*V_O_½"

and thus equation (i0') becomes converted to

and if the further change of variable is made that

[59]

then the governing differential equation appears as

- ?)_Z -_ (1 [58']

and the boundary conditions formerly stated as equation (ii) now become

Z = 0 for _ = _ ; Z = Z0 for _ : 0 [ii']

An appropriate solution of equation (58') which satisfies the

boundary conditions stated in equations (ii') is

Z (_,_])= f_ H(9') _'(___V)_ e-_,d_"
leO]

wherein the function H(_') has to satisfy the integral relationship that

f[ H(_')d_"Zo(_)= .(__V)V '
[el]

Thus the H-function may be written as

H (_)- dv (v--V)';,dV- [ _/. + _--_,),;--Tj
[62]

where the dot over the Z0 has the usual significance that
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d Zo

Thus an appropriate solution for Z may be more explicitly

written as

[ #, + i,,,[_,Z(_n) -sinn/3 Zo(0) e-'_¢_ e ,_

73

"" ZJ(_"_) dg/ d_' sin=/3 Zo(O)
". (_-_0"I. - _ ¢'s, (_- _'r, a_ j

f f d%" , _, (_--_')Y'(_'_ %')'/'d _'

Now the indicated integrals appearing here may be evaluated to

give the following results:

_3

fO ep e9(ep-ep' )
,2/3(_ _ _,)1/3

(_ _

q5

- I +f_(_ _ <_,)1/3(<_,_ _.l)213

wherein the symbol F(O,n) is used to denote _he incomplete gamma

function, defined as

F(On)=f:t"--ie _dt-

Consequently, the sought solution for Z may now be written as

z (_, _) _- Jo"°<">r(_-)lr(_)s'In'3 [_o<O>r(+)l_(_)--r(_;_-)]--"'- , ,

--F [ _' 2 sinnl39(.--..', ;_]1 _'': _ r(')l--""o<O'r(_;-_)+

+_o<,>r(_-)-7o_o<,,,_<,_,,,
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which gives the velocity distribution occurring in the boundary layer

in proximity to the constraining wall.

{SZ _
Next, then, it will be of interest to find the value of

inasmuch as the skin-friction drag may be evaluated once this derivative

is known, because the velocity gradient is related to this derivative in

the following way:

"_Z 2u "_u 2u® O® "_u

)@" 1--u. _ )@* 1--u. _ p )y "

It is immediately apparent what the value of the derivative is by

reference to the expression for Z given above, and when evaluated at

¢ = O, the result is

( ).w_. _ sin_/3 (-[-J.3 ----F,3-) 6 _ 1.3]-_ff/_;_-o-- _- [--Z,(O) F(_---) 79"t ' 16) ',' l_'lo ( 1 9v' ( 16]'/,

ff d_( 1 sin-/3 Zp[' I _ 9'_ ( 16 _'1.[, dZ.(_,',• zo(_()(___,)./. =- _ _ _ / 6 _l.a / Jo (_--_()'/"

The frictional shear stress may thus be evaluated by use of the

information at hand, inasmuch as

where an affine connection between wall values and free-stream values

for the product _p has been assumed, that is, where use has been made

of the substitution that _wPw = CwP_. It should be observed that in

this system of notation Cw = C*.

Thus_ because it has been pointed out earlier that (i - u_) AO'

it follows that the sought expression for the skin-friction coefficient

may be written as

El -- sin_/3_ F -_-_ 1.a ] to (_--O,')'/, (_--_,')'/.
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15. EVALUATION OF THE INTEGRAL APPEARIN_ IN THE SKIN-FRICTION

FORMULA AND SUBSTANTIATION OF A SIMPLIF [ED EXPRESSION FOR C

In order to carry out the indicated inte_ration which is required

for evaluation of the skin-friction coefficient, as just defined above,

it will be found especially convenient to proceed by making the
substitution

q_= a q_*'/_ [6_

/0 _ dZ0/A0
in the expression in question, namely, {O - _z_2/3

l)

assumed that a is a constant.

where it is

This assumption for the affine relation between @ and _.3141

is justified on the basis of the results of d_tailed calculations such

as those made subsequently in sections 14 and 15. In fact, it is seen

from these calculated results that the ratio is actually always

 .3/4

going to remain very close to unity for a very remarkably large range
!

of variation in the parameters Xe and Me.

Now, by changing the limits of integratic.n, one has that

fop dZo/A o I Z o(%') I fq_ ,_Z o d_'l. (__qf_),/, - _i ° q_,/, F A_ o ,.!q_'_ (_--qf,)',",

where gO is used to denote the value of _ corresponding to _* = _0"*

In addition, previous analysis gives thai

1 dZ o n A.*

Ao do" ----]_. _o_. -- e?"- "- lAo

and thus, thanks to the affine relation specilied in equation (64),

the evaluation of the integral appearing in t_e expression for the skin

friction may be reduced merely to the requirenent for evaluation of the
series
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From this starting point, then,

found by replacing q°--_lby t that

in the case where n > O_ it is

2m

';'o

5 St. 5 fli+_+,)--T d+,_ f[+-T-' <___,)-T d+, =. o _,+,+,t,-,O--t),-_dt

r (p) F (q)
=O,+,+lB(p,q)=_t+,+t F(pH-_)

2n i

where p = m3 and q = _.

In the case where n < 0 there is no need to consider

the following three discrete cases:

(a) For n = -i the integral becomes

other than

( 9o/--'/,--2( 90/% --0.41666( 90/'!,
f,."--'/'--' (_--_')--'/'d_'_?--'/'[l'5\_-/ ,9-I \ q_/

l--0.21164 --0. 135802 \_-/ --0.097499 _¢P/ -- O. 074817 _P/ -4- 2,64912

provided it is taken

(b) For n =-2

for granted that

the integral becomes

3 1)'/, __ 1)'._

where

(e) For n = -3 the

f j_ _:' {_-- _,)-'/. d _

t=- _f_-_O

integral become s

1 {s_t + 5t ): -- _ _ 9o' _ + lOJ -- 0.503833 $-'/.

"":": lt' -- $'/, t + C/, + 2 V'-3- gm-_ 2 t -- _'/,
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Having carried out these detailed evaluations for I, the following

pertinent summary formula for calculation of the skin-friction coeffi-

cient may be used:

"V/ Re ¢p°V,Gt= "$/--_. 0.6826 [a-'/o + a'/.V'½I ] [66]

At this point it is worth noting that i_ one drops out of this

expression any contribution to the skin friction arising because of the

presence of the self-induced pressure gradierts, and if just the case

of a flow over a flat plate is considered, then the above-written expres-

sion reduces to merely

c, = V c. o.6s26 [66']

while it will be recalled that the widely used Rubesin and Chapman

result (ref. 6) for such uncomplicated conditions is

c'_= _ o. 664

Consequently, it appears that the skin-friction coefficient Cf is given

by the present analysis to an accuracy which deviates only about 1.8 per-

cent from the well-established value that has been found to be generally

applicable.

For purposes of a further check on the _resent derivations, com-

parison can also be made with the particular pressure-gradient case

me
studied by Falkner and Skan for which -- = _x in an incompressible

u_

stream. In terms of the developments adduced above, the case in ques-

tion is handled by first evaluating _ as

" d _" 4 1
( ,o3/4

inasmuch as under present circumstances, as Is demonstrated in appendix C,

the value of e5 is a constant and, in fact, 98 = 1.46.

Meanwhile, it is also true for the present case that

u s. d

and, consequentl_, the skin-friction coefficient may be evaluated from
the relation
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but because the indicated integral may be evaluated as

(? -- ?,)'/,

it follows that, for this special type of pressure gradient, the present

method predicts that

h'/, x
(7, = 2. 187

It may be recalled that the equivalent expression obtained by

Hartree in this same case is, instead,

ht/. x

and, consequently, it may be seen that the error involved in using

equation (66) for the case under consideration is only about 11.4 per-

cent from the accepted value.

On the basis of these checks it appears, therefore, that the

expression for the skin-friction coefficient, as embodied in equa-

tion (66), will be sufficiently accurate for most purposes.

14. APPLICATIONS

A numerical application of the theoretical method expounded above

will now be carried out for the following two cases of interest:

(a) a curved constraining wall defined by the relation

in which

(b) a flat plate for which

dy .
%. = _ = _o Z, b, _*_

(o
¢o= 0.087 ; bo = 1 ; bj =--2 ; b 4 =- 0.98 ; b, = 0 for i _12

_=o.

[671

For both of these conditions the calculations are to be made for

the following six selections of concrete values for the Mach number and

the Reynolds number: Reynolds numbers taken as Re = lO 6 and 107 and

Mach numbers taken as M_ = 5, 6, and 8.
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A typical value for the total temperature is selected as

On the basis of this assumption the value of the constant C*

obtained from the relation

C._ _.T® I/T. T- +s F_- T-+ 120_® T. = T. T. +S = _® T. +120

T_ = 250 ° K.

may be

where the relation between viscosity and temperature is assumed to fol-

Tw
low the Sutherland law. Now the -- ratio Is obtained from

T_

T__z_-= 1 + -'--=-:- M'.
T®

and consequently,

O.55945

C* : Cw = I0.48826

!
Lo. 385Ol

for M_ = 5.0

for M_ = 6.0

for M_ =8.0

!

The corresponding values for the parameters Me and Xe are

summarized in table I.

The values of the constants KO, Ki,m_ Ki_m,n, which appear in

equations (47), (48), and so forth, have beelt calculated once and for

all by assuming for _0 the value 4/500, which may be considered as a

guessed trial value, but which really does not have much of an influence

on the final result and will not be altered :.n succeeding steps. These

K-values have been collected to form table I_:.

By means of the determining relationshi]_s set down as equations (50),

(51), and so forth, the values of the coeffi('ients _-- have been

ascertained and the results are presented in tabular form. These values,

presented as table III, pertain to the case c_f the curved constraining

wall.

By use of equation (67) the x- and y-coordinates of the curved

constraining wall have then been computed from the values given in

table III and the results are presented in table IV.

Graphs have been constructed which show the shape of the airfoils

corresponding to the coordinates given in the tables, and these contours

are given with 5 times magnification of the vertical scale in fig-

ures 1 and 2.
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Pe

The corresponding pressure distributions _ have been calculated

at the points along the airfoil contours by making use of the values of

which have been presented in table III. The location parameter for

AO
P_ee values are displayed

the pressures is _*, and the pertinent sets of p_

in table V.

The pressure distributions which are produced on the airfoil shapes

displayed in figures i and 2 are also depicted in the upper set of

graphs in figures i and 2, by plotting the data adduced in table V.

In order to arrive at an evaluation of the skin friction produced

on such airfoils, it is first necessary to obtain values of e 8 which

hold at the outer edge of the boundary layer. These values may be

obtained by solving equation (39'). For convenience it may be assumed

that CO = 0.9252 = 0.990025, and then by making use of the data of

table III, the sought values of e_ may be determined for the usual

sequence of _* values. These operations have been carried out and

the results are collected into table VI.

The values of _ which correspond to the selected values of T*

for the various Mach number and Reynolds number combinations now under

consideration are presented in table VII. It may be observed from

scrutiny of these values that the supposition that _ = a_ .3/4 (as

suggested in eq. (64), with a assigned the value unity) is quite amply

justified. Moreover it will be seen from the results that setting

a = i is legitimate in every single case for the whole range of vari-

ables under consideration; as an example, even for the condition of

M_ = 8 and Re = 106 , the proportionality constant between _,3/4 and

is actually 1.041, which is close enough to unity for practical

purposes.

Making use of the tabular information that has already been referred

to, one may now proceed easily, through use of equation (66), to find

the skin-friction coefficient Cf which will be given in the combined

form of a term denoted by R_ _*i/2cf. These values are presented in

l

table VIII. They have also been plotted according to their location

along the airfoil chord, in the upper graphs of figures i and 2. In

order to plot against the X/L-coordinate, one needs to use the data

from table VIII in conjunction with the information given in table IV.
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It may be seen from examination of the profile contours given in

figure 2, which apply for Re = lO7, that the contour shapes are prac-

tically indistinguishable from one another for the three Mach numbers

illustrated. On the other hand, the graphs showing the corresponding

pressure distributions for these three profiles exhibit a rather marked

difference, and this notable variation takes place even though the high-

est value of Xe that is involved is only _[e = 0.124. When one looks

at the similar curves for the pressure distr:butions that have been

obtained for the other three profiles, pertaSoning to the lower Reynolds

number situation, for which Re = lO6, the d:ifferences between the dis-

tributions are even more accentuated than those for the Re = 107 case,

but this significant spread in the distributions in this latter case

(Re = 106 ) is to be expected because of the more elevated values of Me

that are involved. The pressure differences that are observed in this

latter case are, in fact, not surprising, because the corresponding con-

tour shapes are appreciably different, as shcwn in figure I, even though

the constants b i are the same, of course, Jn all three cases.

15. THE FLAT PLATE - NUMERICJL APPLICATION

By returning once again to use of equations (50), (51), and so

forth, the values of the coefficients --A_ hsve been determined in the
AO

present case of interest, where the profile contour has been assumed to

be that of a flat plate and where the same f]ight conditions of Mach

number M_ and Reynolds number Re, as used in the preceding section,

are again selected for illustration. The computed values of _ for

these conditions are given in table IX. These coefficients have been

used to compute the relation between _* and the x-coordinate on the

flat plate, and the results are presented in table X.

In order to arrive at an evaluation for the skin friction, the

necessary task of calculating 85 has been carried out for the case

of the flat plate under consideration, and th_ resulting values are
adduced in table XI.

When the values of _ are computed, whi2h correspond to the values

of _* that have been used here, it turns out that the constant a

appearing in equation (64) takes on an averag9 value which is very close

to all the individual evaluations of the rati9 q9 For the several

m.314"
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different flight conditions under consideration, it is found that these

various median values for a are the following:

I Ro = 106 ; a = 0.98814 ; M® = 6 I R, = 106 ; a = 0.98857 ; 3I_ : 8 I R, : 104 ; a : 0.(._7213 •M® =5 Ro 107 ; a 0.98821 ; Ro 107 ; a 0.98852 ) R° 10: ; a 0.98808

Making use of the information that has now been assembled, in this

case of flat-plate flow, the pressure distributions and reduced skin-

friction coefficients A = _ Cf, which are locally realized along

the flat plate, have been computed and the numerical data are given in

table XII, while the graphical display of these flat-plate airfoil

boundary-layer characteristics are given in figures 3 and 4.

The influence of the parameter Xe in producing significantly

different levels in the pressure distributions is again evident from

these flat-plate data. It is especially worthy of note that the data

show a trend of increasing skin-friction coefficient with increasing

Mach number for the larger Xe values. This behavior is in direct con-

trast with what is seen to take place at values near Xe = 0. This

astonishing result thus runs counter to what is known to occur in reality

and to be predicted theoretically at lower supersonic Mach numbers.

16. COMPARISON OF THE THEORY WITR EXPERIMENTAL RESULTS

In order to give a check on the validity of the deductions and

formulas presented in this analysis, a comparison can be made between

these theoretical predictions and the results found from experiment,

such as those reported by M. H. Bertram in NACA TN 2773 (ref. 7), which

pertain to the boundary layer on a flat plate immersed in a flow with

hypersonic speed of M_ = 6.86 and with a Reynolds number for the sec-

tion of Re = 0.98 × 106 •

The confrontation of theory and experiment in this case will be

made with respect to the pressure distributions which were measured, as

compared to those predicted here. The theoretical data points for the

Mach number of interest P_o = 6.86 have been obtained by interpolating

between the calculated values which apply for P_o = 6 and M_ = 8, at

a Reynolds number of 106. The theoretical curve, thus obtained, has

been sketched in on figure 3 by means of a dashed line. Even though

the scatter in the experimental points seems to be excessive, neverthe-

less, the theoretical curve, devised as just stated, appears to consti-

tute a very good mean llne for the experimental findings, particularly

for values of X/L greater than 0.15.
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APPENDIXA

TEMPERATURE-DENSITYRELATIONSHIP_PLOYEDIN THEMOMENTUMEQUATION

In order to arrive at the simple form given in equation (i0) for
the differential equation governing the flow in the boundary layer, it

T Pe
is necessary to makeuse of the relation Te - 5"; this simplification
maybe substantiated in the following way.

Whenthe terms representing the effect of viscosity are dropped
out of the momentumequation describing the flow in the boundary layer,
then the resulting more wieldy version may be written as

[A-l]

where the new variables have been introduced through recourse to the

Von Mises transformation, as employed to obtain equation (5) of the
main text.

The formal solution for the pressure difference existing at the

wall and at the outer edge of the boundary l_yer may thus be seen to

be given by

_, U. C. _0 u +.
P® P®

Consequently,

P" =l+yM_ u. C" f:; _ (-_-:) c M_ C2]/_ * JBo_ '_ ( ug_ __ _" (_-_-) d 0.

Now, inasmuch as it was previously agre._d that

,, //zo-z
u-7 =V_ ; _=_.+ --Vg, vo p *'

x'. , _-I x. V_ p_2_. "e ) (p_ "")dO= _ z,b,_'y+ 2 .u. v. J o-_ Aop
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it follows that

Thus it appears to be entirely permissible to use the relation

po p. T T

p T. ¢_ T,

in the first momentum equation of the main text.
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APPENDIX B

DETAILED DETERMINATION OF THE Fn(e) FUNCTIONS APPEARING

IN EQUATION (19) OF THE TEXT

In the development of equation (19) from equation (17) of the main

text, it was admitted that certain approximations were being indulged

in; the step-by-step evaluation of the pertinent integrals involved is

given below, in order to show the precise place of introduction and the

slight degree of importance of the simplifying tactics employed in

arriving at the description of the _n(e) functions appearing in equa-

tion (19) of the text.

The integral to be approximated is, for _he general case,

__* _-_2

_* e q)*-(P '

(Cp* - (p') 3/2 A(cp' )dq_'
0

for I -1

2(Cp) : A*cp*n/2 when (p* > _0

[=-k

-_ n/2 q_.

(_) = A_q_ when < qO_r.=-k

Consider the following specific case for the first of the sequence

of n-values :

In this first case, where n = -i, an ap;roximation for the sought

evaluation can be obtained by proceeding in the following way. Consider

the integral

i; io

_* _2 _.2
¢

_*-_ !

_lr e _m' dm

(_. _ _,)312_ : _ (_. _ _.)312

I 90 _.2

•--* cp*-cp'

C (_* - _' )5/2
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from which it is readily perceived that

_* .-.2 --,2

, -_,-
¢ e q_*-q_ dcp' 1.

_ _ (_ _ _,)3/2 _,1/2 = _ e
0

e _*-_' d_'

_/_ (M* - qo')3/2 q),3/2

Now let the simplification in notation be made that e = _, and

thus the indicated evaluation for M* >> _P_ is obtainable as

:
_/_TJ. (_.-¢)'i. _'r. - ,_ ,r _.._ _'_ _.v, ll__), o'_

2 I
e_' 02 90"

- _- _.v, _.

"_ 1 / e [1-_°* ]-½_* I c-# ° d

Consequently, the evaluation of the first integral under considera-

tion is obtained from the following development:

, p.oe _'---_' d_' + A*-t 9o*-Y,
l-x = A*_, %/_-d ,.* (_.--9')'h _'½ %/_-jo (_'--_')'/" d

= A*-t 1 e v",. %/_- 9"'1'290" 0 t e-O* + A'__ 9o*--V* -- eric (1-- _./09°. tVt + eric 0 .

The quantity set off within brackets reduces simply to

-- eric 0 1 9o* --erie 0 oo e-O' 0 9"
(l___**)fi +erleOoo--erle O 1 + _- 9"]] --2%/7 --"

Consequently, it is evident that the first integral of concern may

as
be evaluated for _* >> _0

e-o t

l-t = A*_ x 9.V#
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In the ease where n = -2, consider the :.ntegral

_Fes

V_-J ,."(q_-*--_P')'-----)'_' _/_- 1-
_* I

2 I Ot e-P' e-#' d _ •
= .--_--_ ,__.._"_" p,_ o_ d p +

Now let the first of these above-written integrals be more closely

examined. It will be seen that

¢-p'

0' p, d _ = 0I-- 01 ½ | __ 01
'°

\ 90--_** !

and it is further readily recognized that the first of these two con-

tributions to the right-hand side will remain finite as _0 _ 0, and,

consequently, it remains finite for _* >> _. Thus it is permissible

to replace the lower limit in this first integral by the value e; then

one may write it as

f; ¢-t_--e-O' dl_=OiH(_) )01 p' -- O'

When this is done, it may be observed that H(8) _0 as e _.

Now consider the other contributing part of the right-hand side of

the above equation; in this instance it may b_ observed that

e-_2_2

/ l ]2

i'__ / _ _ 1

I _ = _ -_o_: 7 __.-e:_ _o_-__-
,i / 2 " 4<p*

[ c _ - 2 '/ _* " + l

J ',\_. __---'_o/I

Then of course_ for i > q)* >> q)_ it is true that

I,o,÷ I>>I,o,,.I
so that, finally, one may give the approximat_ evaluation for the second

term in the series expansion under examinatio] for q_* >> q_O as
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This approximation that has now been made in arriving at this

result for I 2 is not really essential to the development being

expounded. In fact, rather than to follow the recommended procedure,

as previously given, by ignoring in the expression for 1 2 the term

involving j log in comparison with the term log , this

term could easily be taken into account. To do this, while not changing

the expression assumed for A(_), one would be led to take additional

adjusting terms in the development for _w, other than those prescribed

in the treatment given in the main text. These additional terms would

adequately compensate for the presence of the previously ignored term

i__ _..
_* log

Continuing on with the evaluations, the following manipulations

are found appropriate:

In this case where n = -3, one has to assess the value of

e _.--_o' 1 d_' 2 _3e-_,d
vT_ ,. <:_'-¢)'_, ¢'J' v'# _-w,. ( _._.i_, (_,-o,),,.

[ _'V. 2/e ° _e-a'(1--_2) d_ ]

Inasmuch as the integral of the above-indicated second term is

finite for fl = 8, then it is permissible to substitute for the lower

limit the value e, provided _* >> _8. When this is done, it will be

seen then that

f] 1_(1--[3 2) e-_' d_= _(_'--O_)V, _ e o' (1--202)

and consequently, the sought evaluation for the third term in this

series expansion under examination is given as

e-0'(1--20_) 2 l 0e o'1I-a= A'-a _"/' + V'_ %" _' ¢?" J
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APPENDIX C

It is easy and illuminating to make a coz1parison between the values

of _e computed by assuming that the velocity profile for the flow in

the boundary layer is that which corresponds _o the outer-region solu-

tion (as contrasted to the correct expression for u) in the instances

where the pressure gradient is of the type considered by Falker and Skan,

which is ue = hxm. The comparison will be made here in only the sim-
u_

plest cases, for which m = 0 or m = i.

Consider the case where m = 0 (thus wh_re h must be taken as

unity). For this particular situation, and ulder the assumption of

incompressible flow, the pertinent basic relasionships, in the present

notation, are

' ,rio{

Let the usual arbitrary definition be male that the thickness of

the boundary layer is that distance of displacement from the wall where

the velocity ratio has reached 99.5 percent oF the free-stream speed,

or for which _ = 0.995. Thus,
ue

(z)_=_ o.ol

u_ 2

so that erfc (95) = 0.01, and thus one sees from the numerical tables

that e8 = 1.8. Consequently, the angular inclination reached at the

outer edge of the boundary layer is given in this instance as

_" %/_e )0" Vert(O ) _e 0"9673"

In actuality the accepted value for the angular deviation is

0._5

V_

so that the error made in using the formula developed here is about

ll.8 percent (above the value given by exact analysis).
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Continuing with examination of the case where m = 1 (where h

may have any value whatever), one may write, in the presently agreed-

upon notation, that

x _ Z
_*=h_- ; _- =hop° ; Z= Z oF(2) ui _er/c({}) =u_ h_*ui zer/c(O)

U_

Consequently, it may be seen in this case that 0.01 = hi2erfc(es)

and the numerical tables thus show that e5 = 1.46.

Therefore, in this case, the angular inclination reached at the

outer edge of the boundary layer is given as

while the exact result given by the well-substantiated Hartree analysis
is

2 1

Translated by R. H. Cramer,

Applied Physics Laboratory,

The Johns Hopkins University.
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TABLE I

Re = 106

Re = 107

_o=5

!

×e = O.435

Xe = .13986

x_ = 0.435

Xe = .04423

I,%o=6

!

Xe = 0.522

Xe = .21092

!

Xe = 0.522

Xe = .06670

_=8

x& = 0.696

xe = .39425

!

Xe = 0.696

Xe = .12467

TABLE II

K* = 4.43
1,-3

K*1,-2 = .54

K _1,0 = 4.69

K*
i,i = 4.24

KI, 2 = 3.95

KI, 3 : 3.72

KI, 4 = 3.55

KI,5 = 3.35

K2,-I,-I

= 8.74

K2,-230 _,-13 0

= 7.77 = 5.33

_, -13 1

= 3.69

K23 -2, 2 I(23-i, 2

= 6.19 = 2.82

K2, -i, 3

= 1.79

K1, -2, 4 _, -i, 4

= 6.35 = 1.12

K_2,_,-2- - .42
i

K23 _3 - 1•82

K'2, O, 0
= 5.86

K2, O, I

= 4.45

K2, 03 2

= 3.53

_, O, 3
= 2.83

I_3 O, 4
= 2.27

K2, O, 5
= -1.66

K23 i,-i

= 8.87

K2, i,0
= 6.14

K2, i,i

= 4.87

K2, i,2

= 3.90

K2, i, 3

= 3.61

K2, i, 4

=3.09

K2, 2, ....... _, 4, -2

_,2, -i

: 8.90

K23 2,0

= 6.53

K2, 2, i

= 5.12

K2, 2,2

= 4.15

K2,2,5

= 5.75

IC2,2,4
= 3.28

_, 3,-i K2,4,-I

= 8.92 =8.95

K2,3,0 K2,4,0
= 6.48 = 6.61

K2,3,1 K2,4,1

= 5.34 = 5.5O

K2,3,2 K2,4, 2

= 4.35 = 4.5o

_, 3,5 .......

= 4.05

K2, 5,0

= 6.72

K0 = 1.54
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TABLE V

M_ = 5.0 M_ = 6.O M_o = 8.O

q_* Re = 106 Re = 107 Re = 106 Re = 107

Pe

o.o5 2.o49o2

.i0 I.83217

.15 i.68407

.2o 1.5586o

.3o 1.339o5

•35 i.23993

.40 I.14693

.5o 1.02448

i.79776

i.66667

1.544oo

1.44906

i.25376
1.16282

1.o7631

.91667

Re = 106 Re = 107

Pe/P 

2.64500 2.07217

2.23414 1.8783

.

i.

i.

i.

i.

I.

0004 1.724

81752 1.575

51745 1.335

38773 1.222

26791 1.116

0553 .927

5. 2742

3.796 35

3.16168

2.74123

2. 14587

i.91334

1.70923

1.366

0.8977

2.4807

2.1965

1.959

1.562

i. 392

1.238

1.026

TABLE VI

0.05
•i0

•15

•20

•30

•35
.40

•50

Moo = 5.0 Moo = 6.0 M = 8.0
OO

Re = 106 Re = 107 Re = 106 Re = 107 Re = 106 Re = 107

e 8 e 8 e5

i. 7946

1. 7970

1. 7967

i.7954

i. 7908

1. 7876

i. 7845

i. 7775

1.8110

I.8101

i. 8076

1.8038

1.7965

i. 7935

1.7896
i. 7830

1.7807

1.7830

1.7840

1.7835

1.7800

1.7769

1.7740

1.7663

1.8029

1.8033

1.8007

1.7980

1.7911

1.7870

1.7830

1.7740

1.5908

1.6602

1.6875

1.7015

1.7198

1.7230

1.7230

1.72

i. 7871

i. 7896

1.7888

i.7861

i.7782

i.7752

i. 7680

i.7560
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TABLE VII

O• 008

.05
• 10

• 15
• 20

• 30

• 35
• 40

• 50

Moo= 5.0

Re = 106 Re = 107

O. 047775

•1o525

•176984

•239846

•297592

•4o3428

•45295

•500771

•592316

0.47996

.104765

.176203

•238855

•296444
•402071

.451515

•499264

.590672

= 6.0 _ = 8.o

Re = 106 Re = i_07

0.047593

.1o5652

•177663

.240758

•298701

.404870

•454541

.502505

.594332

o.047889

•104999

•176583

•239354

•297046

•4o2838

•452 _62

•500 L97

•591807

Re = 106

O.044986

•111775

•187172

.252303

•311755
•420111

•470599

•519289
.612406

m

Re = 107

m

0•047678

•105462

.177341

.240335

.298217

.404374

•454084

.502113

.594151

TABLE VIII

Moo =5•0

106
I

107_ iRe = I Re =

.1/2
|

!

0.i0 1 0.4931

•15 i •4935

.2O I .4973

•3o I .5152

"JJ i

.401 .551

• 501 .61

M_ = 6.0

Re = 106 Re = LO7

 i/2c 

O.455
•458

.463

.483

•499

.521

.583

0.507

.5O5

.508

•524

.539

.560

.621

O. 4:)_6

•4:_8

.453

.454

.4F2

.475

.561

M =8•0

Re = 106 ] Re = 107

0.466

.464

.467

.48

•494

.5]-4

•583

O. 385

•386

•391
.414

.433

•458

•535
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6

8

Re

106

107

106

107

106

107

TABLE IX

0.39425

.12467

A*_I

AO

-0.007496

-.002370

-0.011305

-.0O3575

-0.0211318

-.006682

A _
-2

AO

-o. ooo1546

-.oooo154

-o. ooo3515

-. OO00351

-0.001228

-•0001222

_3

AO

-0•00oo655

-0.000152

-.OOOO143

-0.000557

-.OOOO518

TABLE X

M_o = 5.0 M_ = 6.0 M_o = 8.0

Re = 10 6 Re = 10 7 Re = 10 6 Re = 10 7 Re = 10 6 Re = 10 7

x x x

0. i0

•15

.20

•30

•35
.40

•50

0.13547

.21743

.30074

•46942

.55449

.63988

.81135

0.16949

.25758

.34677

.5252i

.61446

.70371

.88223

0.12745

.21652

.3o8o9

.49428

.58870

.684o3

.87611

o.18453

.283o6

.38227

.58173

.68184

.78210

.98299

0.1230

.22110

.34513

.55995

.67091

.78335

0.20486

.32523

.44729

.69406

.81837

.94309
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Figure i.- Curved airfoil profiles. Re = 106.
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Figure 2.- Curved airfoil profiles. Re = 107 .
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Figure ].- Flat-plate airfoil. Re = lO 6.
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Figure 4.- Flat-plate airfoil. Re = 107 .

NASA-Langley, 1961


